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We apply the Cameron-Martin-Wiener (formerly ‘ Wiener-Hermite ’) expansion 
of a random velocity field to the analytical study of turbulence. The kernels of 
this expansion contain all statistical information about the ensemble. Complete 
expressions are derived for constructing statistical quantities in terms of the 
kernels, and for the equations of motion of the kernels. We rigorously prove the 
Gaussian trend of the velocity field of the Navier-Stokes equation in the very 
late stage when the non-linear term is neglected. The n-dependence (n is the 
order of derivative) of the flatness factor, minus three for derivatives of the 
velocity field, shows a rapid increase with n in this stage. 

The late decay problem of the Burgers model of turbulence is studied analytic- 
ally with a view to obtaining suggestive guidelines for fitting the non-linear 
aspects of the model turbulence. We can divide the energy spectrum density into 
two parts, the larger of which is a kind of steady solution, which we call the 
‘equilibrium state ’, which remains self-similar in time in terms of an appropriate 
variable. The deviation from this ‘equilibrium solution ’ satisfies the KQrm&n- 
Howarth equation. As initial velocity field, we take two particular cases: (a) a 
pure Gaussian, and ( b )  a non-Gaussian velocity field. With these two cases a 
detailed spectral analysis has been obtained. The energy spectrum deviation 
from ‘equilibrium’ declines exponentially to zero for all wave-numbers. The 
Gaussian case shows that the flatness factor minus three increases rapidly 
with n, while the non-Gaussian case does not show any marked dependence 
on n. 

1. Introduction 
Cameron & Martin (1947) and Wiener (1958) proposed a new method of in- 

vestigating a non-linear random process. This is to expand a random process 
in an infinite series, in which the first term is an exact Gaussian process and the 
higher order terms contribute successive corrections to the Gaussian form, while 
each of the terms is statistically orthogonal to every other one. This idea has been 
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developed and formulated in detail by Imamura, Meecham & Siegel (1965). 
We call this expansion the Cameron-Martin-Wiener? expansion. 

Even though the Cameron-Martin-Wiener expansion is quite general for 
any random process, it seems more likely to be useful when the process is nearly 
Gaussian as in turbulence (Simmons & Salter 1934; Townsend 1947; Stewart 
1951; Batchelor & Townsend 1949; Frenkiel & Klebanoff 1967), since it is then 
possible to suppose that the convergence of the series can be made rapid. In  view 
of these advantages, a number of studies (Meecham & Siegel 1964; Siegel, 
Imamura & Meecham 1965; Meecham & Jeng 1968) has been carried out for 
problems of turbulence and of the Burgers model of turbulence. 

In the present paper, it will be shown how any statistical quantities can be 
explicitly expressed by the kernels of the Cameron-Martin-Wiener expansion, 
so that the problem of studying the random processes is reduced to finding a 
set of non-random, ordinary functions, the Cameron-Martin-Wiener kernels. 
This method is also applied to the rigorous proof of the Gaussian trend (Batchelor 
1953) of the velocity field in the very late decay state of turbulence and to the 
analysis of Burgers' model of turbulence in the late stage. 

2. The Cameron-Martin-Wiener expansion 
The Cameron-Martin-Wiener expansion is based on the ideal random function. 

Let a,(x) be the a-component of the vector function a(x). The ideal random 
function has the properties, 

(2.1) } 
<aa(X)) = 0, 

(aq(x1)aa2(xiJ> ~ a a , , a z ~ ( X 1 - x z ) ,  

plus further moment equations expressing the condition that a,(x) be Gaussian 
(Wang & Uhlenbeck 1945). Consider a set of functionals, 

These functionals are constructed in terms of the ideal random functions as 
follows : 

m m m 

t=1 i > E = l  i= l  
i+i, 1 

H(m, a l . . . k (x l ,  * * . > x m )  = Il aai(Xi)- C, C, ~ a J X i ) ~ a j , a ~ ~ ( X j - X ~ )  

'm m 

i ,1+~ ,  cz i+p: q 
% + 3 , 1  

+ 5 z 11 aa , ( x i )6~~ , . , 6 (x j - x , )6~~ ,a96(Xp-Xq)+ . . . .  (2.2) 
p>q=l j> l= l  i = l  

The functionals defined above are symmetric with respect to permutations of 
the arguments, (al, xl), (az, x~), ... . From the definition of the functionals (2.2) 

t The terminology ' Wiener-Hermite', originally proposed by Meecham 85 Siegel (1964), 
is not in accordance with scientific precedent because it was not Wiener, but Cameron & 
Martin (1947) who first proposed these functionals in the scientific literature. On the other 
hand, they are so completely identified with Wiener's life work that it seems highly appro- 
priate to include his name in any name for the functionals. As a way of recognizing the 
role of all concerned, we therefore propose the name ' Cameron-Martin-Wiener'. 
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and the properties of ideal random function (2.1) follows the general relation of 
orthogonality (Imamura et al. 1965): 

(HSi;,  ..., m(nl) (xi, . * - >  xn1) H%\+l), ..., a(nl+n,) (xn1+19 * * * )  xn1+nz) 
H(’W) ... m(nl+...+nl-l+l) ,..., a(nl+ ...+ nl) (xnl+...+ni-1+1) * * - >  xnl+...+ni)) 

- exogamous <airs 
pairings -1 0 otherwise. 12.3) 

Any expectation value of products of H’s which cannot be reduced to the form of 
the right-hand side of the above relation will vanish. Hence, if (n,+ ... +n,) 
is odd, the expectation value must vanish. The simplest case of the above relation 
is 

(Hg.’..an (XI, ...yxm)H~~,’...,pm(~l, * * * t Y m ) )  

= an,mC~al,picl,S(XI - Y ~ W )  aaor,,picnra(x,-Yi(n)), (2.4) 

where C means the sum over all possible permutations of the set of numbers 

An arbitrary random vector in three-dimensional space may be expanded in 
terms of the statistically orthogonal set of functionals defined in (2.2). In  parti- 
cular, an arbitrary random function f,(x;t) with vanishing mean value and 
homogeneous in x space is expressed as follows: 

(i(l),  ...,i( m)). 

x HLy). .a, (~11, * * * 9 dq 1 * . . d q m ,  (2.5) 

where the summation convention for the repeated indices al, . . ., a, is understood. 
This is the Cameron-Martin-Wiener expansion. The functionals H(m) which are 
the basis of the expansion may be called Cameron-Martin-Wiener functionals. 
The non-random function KCm), the Cameron-Martin-Wiener kernel, is symmetric 
with respect to permutation of its arguments, (u1, xl), ..., (a,, xm), and is a 
tensor of rank m + 1.  The absence of the constant term in the expression implies 
the vanishing mean value of the random function. The homogeneity of the field 
is guaranteed by taking the Cameron-Martin-Wiener kernels to be functions of 
difference arguments only. 

As with ordinary non-random functions, the Fourier transform of the random 
function can be defined 

ca(5) = Saa(q)exp ( ~ * q ) d q *  (2.6) 

The fundamental properties of cZa(5) are 



596 W-H. Kahng and A .  Siege1 

If we write the Fourier transform of the Cameron-Martin-Wiener functionals as 

l%y!,am(5.1, . . .t5nJ = I... pK!.%(rll7 . . *?  ?m)  

x exp {i(E.,*?l+ . . . + E.,.rlm)}drll f * * d?m, 

the Fourier transform of the general orthogonality relation (2.3) reduces to - 
- ( n )  

<Ha(l\.,..,Ix(nl) (5.1, 5.nl) H22+1),...,a(nl+n~ (5.n,+l, * . * ?  !nl+n,) 

... '$ii+,..+ni-l+1) ,..., a(nl+ ...+ y) (Ll+...+ni-l+13 9 Snl+...+ni)) 

( 2n)%(nl+...+nl) z rI & a ,  aj S(Si + 5.j), 
distinct exogamous 

plt1rlngs 
exogamoii8 pairs 

= [ O  otherwise. (2.8) 

In  the homogeneous field, the Fourier transform of a random function with 
vanishing mean value is expanded as follows 

x Ifal...am(kl, ..., km)6(k-kl- ... -km). (2.9) 
It is easily seen that the delta function, 6(k-k,- ... -km), guarantees the 
homogeneity of the field. 

3. Expressions for the velocity moments 
We shall assume the field to  be such that every statistical quantity is expres- 

sible in terms of the velocity moments. I n  the following, we shall show explicitly 
how to construct expressions for the velocity moments in terms of the Cameron- 
Martin-Wiener kernels. 

I n  this section, the discussion is primarily restricted to  the three-dimensional 
field. The expressions for the one-dimensional field, such as that of Burgers' 
model, are particular cases of the corresponding expressions for the three-dimen- 
sional field. 

3.1. The velocity correlation tensor and the energy spectrum tensor 

The velocity correlation tensor of the homogeneous velocity field is defined by 

whose Fourier transform is the energy spectrum tensor, 
Q&A = (%(X,t)~j(X+r;t)), (3.1) 

( 3 4  

The expression for these two tensors in terms of Cameron-Martin-Wiener 
kernels is obtained by substituting the expansion of (2.5) and applying the ortho- 
gonality of relation (2.4): the correlation tensor is given by 

&.(k, t )  = Qij(r, t) exp (ik - r) dr. s 

x ~Tj:;...~~(x,+r, ..., x,+r;t)dx ,... axm, (3.3) 
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and thus the energy spectrum tensor is 

o i i ( k , t )  = ‘c (zn)3(m-1) m! s... /dkl ... dk,RLT;,..am (kl, ..., k,; t )  
m=l  

x ( - k1, -. . , - k,; t )  S(k + k1+ . .. + km). (3.4) 

3.2. A triple velocity correlation tensor 

One of the most important cases of a triple velocity correlation tensor in the 
homogeneous field is bhe two-point triple correlation tensor defined by 

Si&, 0 = (ui(x, t )  uj(x, t )  ul(x + r; t ) ) .  (3.5) 

We shall give the evaluation of this quantity in terms of Cameron-Martin- 
Wiener kernels in some detail both because of its intrinsic interest and because 
the methods used are typical. 

Substituting the Cameron-Martin-Wiener expansion of the velocity field 
and dropping the identically vanishing terms according to the orthogonality 
relation, the triple correlation tensor is written 

n n  

(P+@ x Kial ... Gp+g(x-ql, x - ~ ) p , ~ - ~ ) p + l ,  * . . $  X - q p + q ;  t )  
x K‘,P+S’ 7/71...flp++s(x - Cl,  * *  - 9  x -Gp, x - CP+l,  * *., x - C P + 4  t )  

x ( p + g )  a ~ . . . + , + ~ ( q 1 ~  . . * y r j p ,  ~ ) p + l ,  . * . , q p + q )  

x Hg.t~p+s(Cl, **VCp’ C*+l’ ... ,<p+s) 

x fq.:&+s(51, *’.> 5q3spi-1, . “Ys4+5) ) ,  

x Kt:~.%,+,(x + r - -L  . .., x+ r -$, x + r - gp+l, .. . , x+ r -gq+s; t )  

(3.6) 

where the summation runs from zero to infinity over p ,  q and s with the restric- 

( P + d  > 0, ( P + S )  > 0, (q+s)  > 0. (3.7) 
tions 

According to the orthogonality relation, the evaluation of the expectation value 
which is shown in the integral of (3.6) can be made in the following steps: p 
variables andp indices of (q’s, a’s) and of (S’s, p’s)  make couples giving a product 
of p delta functions and of p Kronecker deltas. (A particular case is, for example, 

(3.8) S(?l - Cl) &al, 81 - ‘(qp - <p) Szp,,9p’ 

where the variable qi and the index ai alwaysgo together andsimilarly the variable 
<+ and index pj.) The total number of ways of making products similar to  that 

(p+q)!(p+s)!  
given by (3.8) is 

(“f”) (“is).! = p!q!s !  (3.9) 

In  addition to the above-mentioned type of product, there are other products 
which must finally be multiplied by the product (3.8). The others are the re- 
maining q variables and q indices of (q’s, a’s) and the q variables and q indices of 
(g’s, y’s), which make couples giving the following type of product, 

a(qp+1-51)  ’Ep+1,  y 1 . a .  ‘(qp+p - S q )  yp’ (3.10) 
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while for the remaining s variables and s indices of (T’s, p’s) and of (G’s, 7’s) 
the following type of product is obtained: 

(3.11) 

The total number of ways of making products similar to  those of (3.10) and (3.11) 
are respectively 

(3.12) 

and s!. (3.13) 

When we substitute these products for the evaluation of the expectation value 
into (3.6), we easily see that each product gives exactly the same result. Thus 
the sum of all such products can be replaced by one particular product, namely 
(3.8) times (3.10) times (3.11), multiplied by the numbers given by (3.9), (3.12) 
and (3.13). We then get 

3.3. Fourth- and higher-order velocity moments 

Consider the following one-point fourth-order velocity moment, 

(u& t )  q x ,  t )  UI(X, t )  t ) ) .  (3.15) 

Instead of expressing this directly in terms of the Cameron-Martin-Wiener 
kernels, let us introduce the fourth-order cumulant. The fourth-order cumulant 
is defined as the fourth-order moment minus all possible combinations of two 
products of second-order moments, i.e., if we write for the fourth-order cumu- 
lant N4(i,j, 1, m; t ) ,  then 

N4(i,j, I, m; t )  = (ut(x, t )  ui(x, t )  udx, t )  u,(x, t ) )  

- (Ui(X? t )  Uj(X, t ) )  (UI(X3 t )  u,(x,  t ) )  

- (=,(x, 8 )  udx, 8 ) )  (Uj(X, t f  %,L(X, t )>  

- (u&, t )  %Jx, t ) )  ((Uj(X, t )  UI(X, t ) ) .  (3.16) 

By definition, the fourth-order cumulant is not expressible in terms of the product 
of two, or more than two, lower-order velocity moments. Hence the expression 
of the fourth-order cumulant through the Cameron-Martin-Wiener kernels 
should contain four kernels in each of the terms, but no term can be expressed 



The Cameron-Martin- Wiener method in turbulence 599 

as the product of two or more than two integrals. Following the arguments and 
using notations similar to those of the third-order moment, we obtain 

N4(i,j, I ,  m ; t )  

= C’ ( a + b + c ) !  (a+d + e ) !  (b  +d+ f )! (c+ e +  f )! 
a ! b ! c ! d ! e ! f !  a, b, c, d, e,  f 

x 1.. . ]dxP). . . dx‘,l’dXy..  . d x p . .  . dxL3’ .. . dxl&’.. . dxL5’. . . dxp 

K ( , a + b + c )  zal(1) ... aa(l)a1(2) ...ab(2)a1(3)...a,(3)(X1 (1) 9 . * . )  (1) ) (2) 9 * - . ?  

K ( , a + d t e )  
?al(l) ... aa(l) a1(4)  ... ad(4)a1(5) ... ae(5) (xP’, *..) xg), xi4), 
cb+d+f) 

K ~ a l ( 2 )  ... ab(2)a1(4) ... ad(4)a1(6) ... af(6) 

( c + e + f )  
Kmalca, ... ae(3)a1(5) ... a,(5)a1(6) ... af(6)  

x1 (3) 2 a * - )  t )  

xL5’;t) 

xi4), * * * f  xp’, xi6), * * - )  x:”’; t )  

~ 2 ’ )  xi5), 

* * * )  

. * * )  * * * 7  xi5’, xi6), . - * )  .j6’; t ) t  

(3.17) 

where a, b, c, d ,  e and f run from zero to infinity, with the following restrictions 

( a + b + c )  > 0, ( a + d + e )  > 0, ( b + d + f )  > 0,  (c+e+f) > 0. 

The computation of the rth order moment would be quite similar. It is most 
readily expressed in terms of the rth order cumulant, defined as the rth order 
velocity moment minus all possible terms which are expressed as products of 
the lower-order moments and/or lower-order cumulants. The next step is to 
express the rth order cumulant in Cameron-Martin-Wiener series. In this ex- 
pression, the most important thing is the way of assigning the notations, i.e. 
the variables are divided into ( i ) v ( r  - 1) sets, each of which is distinguished by 
an attached number as a superscript of the variable x. 

The property expressed by (3.17) is extremely important in understanding 
the way in which the Cameron-Martin-Wiener kernels express the statistical 
properties of the ensemble; the simplicity of this result compared to that which 
would be obtained for the moments shows that the Cameron-Martin-Wiener 
kernels fit in a particularly natural way with the expression of the statistical 
properties in terms of cumulants rather than moments. 

4. Derivation of the equations of motion of the kernels 
The time dependence of the Cameron-Martin-Wiener kernels is obtained 

essentially from the Navier-Stokes equation. Substituting the Cameron- 
Martin-Wiener expansion of the velocity field into the Navier-Stokes equation 
and utilizing the statistical orthogonality of the Cameron-Martin-Wiener 
functionals, one obtains an infinite number of integro-differential equations. 
The solution of these equations would express the statistical quantities of tur- 
bulence as functions of time. 

Siegel, Imamura & Meecham (1965) derived the equations of motion of the 
Cameron-Martin-Wiener kernels for the Burgers equation, while Meecham & 
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Jeng (1968) did the same for the Navier-Stokes equation; both results, however, 
were with neglect of higher-order kernels. We shall give here a completely general 
result, including all kernels. 

The incompressibility of the fluid gives 

a 
- u,(x , t )  = 0. (4.1) axi 

Substituting the Cameron-Martin-Wiener expansion of the velocity field and 
applying the orthogonality of the functionals, this becomes 

a 
- axi G ~ ! . . a r n ( x - q l ,  * - * , x - q m ; t )  0, ( 4 4  

the incompressibility condition of the Cameron-Martin-Wiener functionals. 
The pressure P(x,  t )  in the Navier-Stokes equation may be eliminated with the 

aid of the incompressibility of the fluid by taking the divergence of the Navier- 
Stokes equation. Hence, the Navier-Stokes equation can be written? 

a i a a  
-- U i ( X , t ) - - - - U i ( X , t )  at R, axj ax, 

U i ( X , t ) U j ( X , t ) - -  ____--- ( U i ( X ’ ,  t )  U I ( X ’ ,  t ) ) d x ’ .  (4.3) 
4n ’ S  I X - X ’ ~  ax; a a a  ax; ax; 

a 
axi 

= -- 

I n  order to find the equations of motion of the kernels, we at f i s t  substitute the 
expansion of the velocity field into the Navier-Stokes equation now given by 
(4.3), multiply by ( l / m ! ) H ~ ~ ! . a r n ( y l ,  . . ., ym) ,  and finally takethe expectation value, 
to obtain 

where the primes on the summations indicate the restrictions, 

t The Navier-Stokes equation derived at (4.3) is taken to be dimensionless; the velocity 
is measured in units of the raot-mean-square of the initial velocity and the length is measured 
in units of some characteristic length, hence time is measured in units of the characteristic 
length divided by the root-mean-square of the initialvelocity. Therefore the only parameter 
appearing in (4.3) is R,, which is considered the initial Reynolds number. 
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and where we have put 

x f  - x f  - x, = x - y , ,  ..., 1 - Y,, . a * ,  

Y denotes the sum of all possible different terms obtained by exchanging 
the variables and indices between the two sets (x,, a,; . . . ; xp, up) and 
( x ~ - ~ ,  up-,; , . . ; x,, a,). It is not difficult to see that the summation operator 9 
is an operator which symmetrizes the integrals of (4.4) about their variables and 
indices, (x,, al; . . . ; x,, am). 

2, = x-q , ,  ..., 2; = xf -TI, .... 

In  a similar way we get, for the Burgers equation 

(Burgers 1950), the following equation for the kernel of order m: 

x 9' 1.. . Sdz,. . .dzqK@*) (x,, . . . , x p ,  zl, . . . , zn; t )  

(4.6) x K(m-p+q) (XP+, ,  . .., xm, 21, . . . , zQ; t ) .  

5. Approach to the Gaussian distribution in the linear stage 
In  the late decay stage of turbulence, assuming the non-linear terms can be 

neglected in the Navier-Stokes equation, Batchelor (1953) argues semi-quanti- 
tatively that the velocity field tends to a Gaussian distribution. In  this section, 
we give a rigorous proof using the Cameron-Martin-Wiener expansion. A part 
of this work has been reported already (Kahng & Siege1 1967). As a test of the 
Gaussianity of the velocity field, we compute the skewness and flatness factors. 
Our computations assume a completely arbitrary initial velocity field. 

The solution of the linearized Navier-Stokes equation, 

a 1 
- U$(X, t )  - - V 2 U $ ( X ,  t )  = 0, 
at 3 0  

for the initial value problem is given by 

ui(x, t )  = % ' dzu,(x + z; 0) exp { - (RO/4t) z2}. 
( 4 A  f 

Obviously the space derivatives of the velocity field, 

where a;, rv, rz are non-negative integers, obey the same type of equation (5.1) 
and have solutions similar to (5.2). The Cameron-Martin-Wiener kernels of 
the random variable zc$'z'sl"fi)(x, t )  for the initial value problem are readily ob- 
tained by applying the orthogonality relations of Cameron-Martin--Wiener 
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functionals. Since the incompressiblity of the fluid allows KCm) to be exposed in 

terms of a function, L ( m i  
nal ... am (XI, -..) X m ;  t ) ,  

we have the solution, expressed by the Fourier transform of the Cameron- 
Martin-Wiener kernels, as follows: - 
K ~ ~ ~ , ( u ~ z ~ ~ z ) ( k ~ ,  ..., k,;t) = ( - ~ ) " ~ + " Y + " Z + ~ E .  z t n  (k lz + * * *  +kmz)uz 

x (k,, + * . . + k,,)"Y (k,, + . * . + kmz)"Z (kll+ . . . + kml) 

x L Z ~ . . . a m  (k1, .*.7km;o)exp(-(t/Ro) (k ,+* . .  +km)'}, 
- 

where 
is the Fourier transform of 

I?~T:,I~;~Y uz) (k,, . . . , k,; t )  (5.4) 

and k,,, for example, means the lth component of the vector k,. 
The computation of the second-order moments has been done essentially in 

$2. Expressing them in terms of the Fourier transforms of Cameron-Martin- 
Wiener kernels which are the solutions of the linearized Navier-Stokes equation 
(5.4), and incorporating the incompressibility relation (5.3), we get 

(upzciyciz) (x, t )  U(.%.zuzycaa) (x, t ) )  
7 

x 1 . . . s (klz + . . . + kmz)%+Qz (k,, + . . . + km,)-Y+"zY (k,, + . . . + k mz ) U l Z + ~ Z Z  

x ( k * +  ...+ k,)(k,,+ ...+k,,) 

xexp{-(2t/R,)(k1+ ...+k,)2}dkl...dk,, (5 .5 )  

E ( m )  aa, ... a,(kl, . . . 7 k ~ ; O ) ~ ~ ~ ~ . . . a m ( - k l ,  -km;o) 

where 1, n, p and q as well as a,, . . . , a, are running indices, so that the summation 
conventions are applied. It is easy to see that (5.5) vanishes, unless 

glz + gZz + crlu + gzV + rTlz + uZz = even integer. 

This is nothing but the consequence of the reflexion symmetry of the velocity 
field which is a part of the requirements of the isotropic field. Hence, the right- 
hand side of (5.5) is real, as it should be. Let us introduce a new variable such that 

k,+ ...+ k, = K,. (5 .6)  

If we put ( K, = Q1, (5.7) 

then, in the limit (Ro/t)+O, it is easy to see that the second-order moments 
decrease in the following way, to lowest order in R,/t: 

lim ( u ~ ~ z c ~ y ~ i z )  (x, t ) U ~ ~ a y ~ z z )  (x, t ) )  
R,/&+O 

x o( (R0/t)fQ1~+~,~+~~a+~az+~zy+5))f (5 .8 )  
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As a particular case, let us consider the following second-order moment, 

where n indicates the number of derivatives with respect to x. (x is not a running 
index, so no summation is applied to it.) One finds, with quite similar procedures, 

where c2 is a constant which depends only on the initial values of the L's and, 
in particular, does not depend on (Ro/t) or n. 

As is clear from the above expressions, every kernel of the Cameron-Martin- 
Wiener expansion contributes to the second-order moment in the same degree. 
This indicates that the higher kernels do not vanish, even though (as will be 
shown shortly) the velocity field becomes Gaussian in the late stage. This tends 
to suggest that it may be possible to  find a transformation of the differential 
space (probability space of the ideal random function) that will make the higher 
kernels of the Cameron-Martin-Wiener expansion decrease in proportion to the 
approach to Gaussianity (Siegel, Imamura & Meecham 1965). 

The computations of the third-order moment and the fourth-order cumulant 
are straightforward if we follow the method employed in computing the second- 
order moment. So that we get 

and (5.11) 

A particular case of the fourth-order cumulant, 

N p ( t )  = ( (Ugyx,  t))4) - 3( ( ( u p ( x ,  t ) )2) )2 ,  

gives the following relation, 

(2n  - 2r - 1) ! ! (n + 2r - s - p  - l)! ! (n + s + p  - 1)  ! ! 
X 22nH3/2) (n+s+p) 37-s-p Y (5.12) 

where c4 is a constant which is independent of n and (R,/t). 

ness factors respectively, 
In  order to test the Gaussianity of the field, we look for the skewness and flat- 

and 

(5.13) 

(5.14) 
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and 

(5.15) 

(5.16) 

In  particular, the flatness factor of the nth derivative of a component of the 
velocity field, 

is given from (5.9) and (5.12) as 

where c is a constant. 

FIGURE 1. Flatness factor of velocity derivatives in the late decay stage of turbulence. 
Unit of vertical axis is proportional to ( ~ , , / t ) % .  

In figure 1, we plot the flatness factor minus three, on an arbitrary scale, against 
n. It is seen to increase rapidly with n, apart from an oscillation of period 2. 
Since this result is obtained from a linearized equation, for a wide variety of 
initial conditions, it appears that the rapid flatness factor increase with n 
(Batchelor 1953) observed in turbulence experiments may be purely a property of 
the random aspects of the process, rather than of the non-linearity of the Navier- 
Stokes equation. 

The linearized Burgers equation is the one-dimensional case of the linearized 
Navier-Stokes equation. Hence, by applying the same procedures, it is possible 
to show that, in the Burgers model of turbulence, the skewness factor of an 
nth derivative of the velocity field decays as (R,/t)i (if n is even, it vanishes 
identically) and the flatness factor minus three decays as (R,/t)h. 
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The above conclusions are derived by omitting completely the non-linear 
terms of the Navier-Stokes of the Burgers equation. Even if we retain the non- 
linear terms as a perturbation, the Gaussian trend of the velocity field can be 
proved. However, the n dependence of the skewness and flatness factors would 
depend on the initial velocity field until the linear stage was reached. Results 
of perturbation theory for the Burgers model of turbulence will be obtained in 
9 6.6. 

6. Burgers' model of turbulence in the late decay stage 
6.1. Use of the Hopf-Cole solution 

In  this section the method of the Cameron-Martin-Wiener expansion is applied 
to the investigation of the late decay problem of Burgers' model of turbulence, 
paying particular attention to the non-linear aspects of the process. 

If we take the time origin late enough, the initial Reynolds number R, is 
very small. Therefore R, ought to be a good expansion parameter for any quantity 
in this stage. The solution of the Burgers equation for the initial value problem 
(Hopf 1950; Cole 1951), 

2 a  
u(x, t )  = ---log 8(x, t ) ,  R, ax 

where 8(x, t )  = (A) R *  Srn exp ( - 2 z 2 )  exp [ - $ l T u ( s ,  O)ds] ,  ( 6 . l a )  
4 d  -a 

can be expanded in powers of R, as 
m 

+ , t )  = x u(n,(x,t), 
11= 0 

where 

( 6 . 3 ~ )  

u(2)(x, t )  = . . . .t ( 6 . 3 ~ )  

One can easily show that the expansion (6.2) satisfies the perturbed Burgers 
equation taking the non-linear term as a perturbation. 

6.2. Choice of the initial condition 

Because the Hopf-Cole solution (and thus the expansion developed in $6.2) 
is the solution of the initial value problem, the choice of the initial velocity field, 
which should be realizable, is all-important. But we do not know how the 
velocity field has developed from the early stage. The most interesting way to 

t Dots on the right-hand side of an equation indicate that a, lengthy expression has been 
omitted. A copy of the full text may be obtained from either the senior author (A.S.) or 
the editorial office of the Journal. 
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proceed seemed to be to take, as representative cases, the following two initial 
velocity fields for the discussion of this section: 

A -  

(a) u(x, t )  = - P ) ( X  - 7;  0) H(')(r)dy,  
ax " J  

and ' (b )  u(z, t )  = L(l)(z - 7; 0) H(l)(q)dy 
ax 

where the function L(m)(x,, . . ., x,; t )  is defined by 

( 6 . 6 ~ )  

or I w ( k 1 ,  . . . , k,; t )  = ( - i) (k, + . . . + k,) L(")(kl, . . . , k,,,; t ) .  (6.6b) 

These are, of course, 'initial' fields only relative to the late decay stage. With 
these choices we can evaluate the behaviour of a pure Gaussian field and the 
effect of a non-Gaussian addition to it. The introduction of the function 
L(,)(k,, ..., k,; t )  is motivated by the fact that properties (Siegel & Kahng 
1969; Kahng & Siegel 1968) 

a 
K(")(x,, . . . , x,,,; t )  = - L(,)(X,, . . . , x,; t )  

ax 

* 

E(,)(kl, . . .) k,; t )  = L(@( - kl, . . .) -I%,; t )  (6.7) 

and E(,)(O, ..., 0 ; t )  + 0. (6.8) 

The choice of this form for the kernels is in accordance with the following, as 
explained in detail in the paper by Siegel & Kahng cited above: It is shown there 
that the odd-numbered kernels must be either even or odd functions in the 
isotropic field. It is then reasoned that if the resolution of this choice is made 
according to the criteria that the Burgers model should be set up to parallel 
incompressible three-dimensional turbulence as closely as possible and to have a 
Reynolds number which approaches zero in late decay, and that a quasi-linear 
stage should even exist, the decision must be in favour of odd functions; and 
these functions, in view of the circumstances pointed out in the article, can be 
written in the form given. 

It is noteworthy that certain unpleasant potential features of the Cameron- 
Martin-Wiener expansion in the Burgers model are eliminated by the choice of 
odd parity for odd-numbered kernels. One such unpleasant feature, pointed out 
in the previous reference, is that the second-order kernel when the odd-numbered 
kernels are even functions has to be larger than the first-order one, which means 
that if the field is close to Gaussian, a large number of higher-order kernels have 
to be carried along in the calculation in order to cancel the effects of the non- 
Gaussian second-order kernel; thus truncation to a few terms of the expansion 
becomes impossible. Another is that, without the restriction to odd parity, the 
solution to the Burgers equation in the quasi-linear stage gives rise to features 
that are non-uniform in time; whereas, as will appear in the present paper, the 
odd-parity restriction leads to a solution having a self-similarity property in 
time. 
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On the other hand, Professor A. Newel1 of the University of California at 
Los Angeles has expressed to us the opinion that work of Lange (1969) may 
imply the invalidation of one of the assumptions on which the above argu- 
ment is based, namely, that of linearization in late decay. In  particular, this 
would not permit the deduction of the t-4 decay law found in Siegel & Kahng 
just after their (38). Until it  is shown that the argumentation of Siegel & Kahng 
either survives this potential criticism or can be reconstituted with some per- 
haps altered assumption, it is not possible to exclude the even-parity choice 
completely. However, as shown by Siegel & Kahng, the requirement that the 
odd-numbered kernels must be either all even or all odd, but not mixed is the most 
general way to satisfy the isotropy condition that it is possible to formulate 
clearly thus far. Hence on the ensuing pages we study at the very least one of at  
most two mutually exclusive possibilities, at least as far as present understanding 
goes. 

The choice (a) ,  (6.4)) the Gaussian initial velocity field, is of special interest, 
not merely because of its mathematical simplicity, but because of the Gaussian 
tendency of the velocity field in the late decay stage, which was generally proved 
in $ 5 .  However, experiments and theory both indicate the importance of the 
departure from Gaussianity. It is for this reason that the non-Gaussian velocity 
case ( b )  is also taken up. This may help to understand in what direction we will 
need to correct the oversimplified conclusions to which case (a) must necessarily 
lead. 

6.3. Solutions for the Cameron-Martin- Wiener kernels 

Given the expanded form of the Hopf-Cole solution (6.2)) the time-dependent 
kernels are obtained by substituting the initial conditions, multiplying 
(I/m!)H(m)(y,, ..., y,), and taking the expectation value utilizing the ortho- 
gonality relation of the functionals. We obtain the following, in terms of Fourier 
transforms : 

(i) Gaussian initial velocity Jield: 

B(l)(k,, t )  = . * .) (6.9) 

R(2)(kl, k,; t )  = . . . , 
8(3) (k , ,  k,, k,; t )  = . . ., 

Ro")(kl, . . . , k,; t )  = ... . 

(6.10) 

(6.11) 

(6.12) 

(ii) Non -Gaussian initial velocity j ie ld:  

R(l)(k,; t )  = . . . , 
B 2 ) ( k 1 )  k,; t )  = . . . , 

(6.13) 

(6.14) 

B(3)(k1,k2,k3;t) = ..., (6.15) 

B'4'(k1, k,, k3, k,; t )  = . . . , (6.16) 

B5)(k1,  k,, k,, k,, k5; t )  = ...) (6.17) 
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Since the late stage is characterized by the smallness of the Reynolds number, 
the order of smallness of each term will be measured by its power of 
R,. R(m)(kl ,  . . . , k,; t )  in this expansion consists of an infinite series, whose suc- 
cessive terms become smaller and smaller. However, the higher order kernels 
are not necessarily small compared with the lower order kernels. Rather the 
smallness of the higher-order kernels is highly dependent on the choice of initial 
conditions. 

It should be noted that, in the explicit expression of the Cameron-Martin- 
Wiener kernels, no trace remains of the arbitrary constant x, which appeared 
in the Hopf-Cole solution (6.1). 

The approximation of the Cameron-Martin-Wiener kernels presented above 
can also be examined directly from the equations of motion of the kernels. In  
fact, it can be shown that the solutions we have obtained satisfy the perturbed 
equations of motion. 

Our present result completely agrees with that of Siegel, Imamura & Meecham 
(1965), if we choose the same initial velocity field. In the present approach, 
however, the smallness of the higher kernels comes out as a natural consequence 
of the late stage. 

6.4. Non-linear process in the late decay stage 
The counterpart in the Burgers model of the K&rmh-Howarth (1938) equation is 

(6.18) 

where Q(r, t )  = ( ~ ( 5 ;  t )  u(x + r ;  t ) )  ( 6 . 1 8 ~ )  
and X(r,  t )  = (u(x, t )  u(x,  t )  u(z + r ;  t ) ) .  (6.18 b )  
We here propose to utilize the general expressions of the preceding subsections 
in order to investigate non-linear effects in the late decay state in some detail. 
In doing so, we are of course motivated by the hope that this region, in which 
non-linear effects are relatively easy to study, may provide insights toward 
the understanding of the more strongly non-linear region. The results to be given 
are of perturbative type. They differ from previous perturbative analyses in 
possessing the peculiar advantages of the Cameron-Martin-Wiener expansion, 
principally that of giving an energy spectrum which is always inherently positive. 

It will be convenient to introduce an auxiliary function W(r , t )  defined by 

9 ( r ,  t )  = QP, t )  - Q'P, t ) ,  (6.19) 

where Q'(r, t )  satisfies the linear equation 

a 2 a2  

at R, ar2 
- Q'(r, t )  = -- Q' (T ,  t ) .  (6.20) 

Furthermore, 9 ( r ,  t )  is taken so that (2/Ro)(a2/ar2) 9 ( r ,  t )  and (a/ar)X(r, t )  are 
of the same order in the powers of the expansion parameter; this determines 
W and makes all terms in (6.21), below, of the same order. Because of (6.20), 
W(r ,  t )  satisfies the equation, 

(6.21) 
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which is of exactly the same form as the K&rm&n-Howarth equation of the 
Burgers model. 

We have divided the correlation function into two parts. One of them is in- 
dependent of the non-linear process (at the instant itself), and the other is 
associated with the non-linear process. Although one cannot expect to achieve 
a clean separation of linear from non-linear effects, we may suppose that any 
effect involving W(r,  t )  must be quite essentially of non-linear nature. 

The same procedure can be carried out for the energy spectrum density. We 

define &(k, t )  = E(k,  t )  -E’(k,  t ) ,  (6.22) 

(6.23) so that 
2 a 

- E’(k, t )  + - kZE‘(k, t )  = 0 
at RO 

and 
a 2 
- &(k, t )  +- kZ&(k, 0) + T(k,  t )  = 0, 
at RO 

(6.24) 

in which we impose the condition that (a/Ro)k2b(k, t )  and T ( k ,  t )  are of the same 
order. &(k, t )  is the Fourier transform of W(r,  t ) .  Although the energy spectrum 
density E(k, t )  is positive, &(k, t )  is not necessarily so. &(k, t )  is to be understood 
as the deviation of the energy spectrum density from a certain definite form, 
E’(k, t ) ,  which is the main part of the energy spectrum density in the late decay 
stage. We shall call the latter the ‘equilibrium energy spectrum density’, be- 
cause it will be seen to be expressible in terms of a self-similar functional form 
independent of time (the time dependence taking place through the variables 
and through the multiplicative coefficients). 

6.5. The spectral analysis 

(i) Gaussian initial velocity$eld. The energy spectrum density in the late stage 

E ( k , t )  = .... (6.25) 

The successive terms are seen to be of smaller and smaller order in Rt. From 
this energy spectrum density, the equilibrium energy spectrum density E’(k,  t ) ,  
its deviation b ( k ,  t ) ,  and the energy transfer term T ( k ,  t )  are obtained as 

E’(k, t )  = ..., (6.26) 
&(k,t) = ..., (6.27) 

T ( k , t )  = .... (6.28) 

It should be emphasized at  this point that E’(k,t) which behaves linearly 
from the point of view of the K&rm&n-Howarth equation, nonetheless contains 
terms of non-linear origin from the point of view of the velocity function (e.g. 
terms in E‘(k, t )  of fourth order in X(l)). Thus the present theory is perturbative 
from the point of view of the K&rm&n-Howarth equation, but better than per- 
turbative from that of the equation of motion of the velocity field, since even 
its zero order contains non-linear elements. 

obtained from the kernels (6.9)-(6.12) is 

By direct calculation, one sees that 

39 

(6.29) 

F L M  41 
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which shows that the present approximation satisfies the energy conservation 
law for the non-linear term. 

Let us now look at  the Loitsianskii parameter of the Burgers model of tur- 
bulence as the coefficient of k2 when the energy spectrum density is expanded 
in powers of k (Siegel & Kahng 1969; Kahng & Siegel 1968). In the present 
approximation, it is given by 

(6.30) 

where 

= constant, ( 6 . 3 0 4  

x (exp [ - (4t/R0) V 2 ]  - 2 exp [ - (2t/R0) k’2] ) .  (6 .30b)  

This Loitsianskii parameter is not constant in time, unlike that of three-dimen- 
sional real turbulence. However, since the contribution to the Loitsianskii 
parameter from &(k, t )  is small, we can say that the Loitsianskii parameter does 
tend toward a constant in the late decay stage. The constancy of the 

E*lk=o 
part of the Loitsianskii parameter of the Burgers model of turbulence and of 
the Loitsianskii parameter of real turbulence all have this in common: these are 
parameters of the energyspectrum to which the non-linear term of the Kirmhn- 
Howarth equation does not contribute, hence embody a purely linear aspect of 
the flow. 

A detailed study of the energy transfer process can be done by examining the 
energy tranfer term T(k, t )  directly, and by comparing it with &(k, t ) .  According 
to (6.24), the rate of change of the energy spectrum deviation is minus the sum 
of the viscous dissipation of the spectrum deviation and the energy transfer, 

a 2 
- &(k, t )  = - - k2b(k,  t )  - T(k,  t ) .  
at RO 

According to this equation the viscous dissipation of the spectrum deviation 
tends to make the deviation of the energy spectrum density decrease in magnitude. 
However, if the sign of T ( k ,  t )  is opposite to that of &(k, t ) ,  and if T(k,  t )  is large 
enough, the energy transfer process may make the energy spectrum deviation, 
in some wave region, increase. 

For the sake of definiteness, let us consider the case of small (Ro/t). Putting 

(I = (&)$ k ,  (6.31) 



The Cameron-Martin- Wiener method in turbulence 61 1 

and neglecting higher-order terms in Bolt, we get 

(tlR0)) k 
FIGURE 2, Eqnilibrium form of energy spectrum in the late decay stage. 

Unit of vertical axis is proportional to (Bolt). 

We see that the introduction of the variable q has separated two forms of time 
variation in E’(k, t ) ,  €(k, t )  and T(k,  t ) :  ( 1 )  A shift of the wave-number abscissa 
values, without change in form of the functions, towards the origin at a rate 
proportional to (t/Ro); and ( 2 )  a reduction in amplitude by the respective factors 
(R,/t), (Ro/t)*, (Ro/t)Q, respectively. 

The fact that T(k,  t )  decays faster than (2/Ro)k2E’(k, t )  is a manifestation of 
internal consistency in these results, since the assumed Gaussianity of the field 
is supposed to be a consequence of an approach to linearity with time, and 
T(k,  t )  is the non-linear term. 

In the late decay stage, the universal forms we have found by the use of q 
as variable show that any characteristic wave-number, if we assign one, varies 

39-2 
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in proportion to (Ro/t)&, while the scale of turbulence in this stage increases in 
proportion to (t/R0)+. 

For further understanding of the non-linear aspects of the process, let ue 
consider the ratio, 

(6.35) 

which measures the energy spectrum deviation per unit energy spectrum density. 
In this late stage, it has the form, 

(6.36) 

The behaviour of y ( k , t )  is illustrated in figure 5 .  The diagram shows that the 
magnitude of y ( k ,  t )  is generally increasing for large wave-number. This shows 

FIGURE 3 FIGURE 4 

FIGURE 3. Energy spectrum deviation (Gaussian initial case). Unit of vertical axis is 
proportional to R:(R,/~)#.  

FIGURE 4. (1) Viscous dissipation. (2) Energy transfer term. (3) Minus the rate of change 
of the energy spectrum deviation (Gaussian initial case). Unit of vertical axis is proportional 
to R,(Ro/t)s. 

that the non-linear aspects of the motion of large eddy size fade away faster 
than those of the motion of small eddy size. (Naturally, the expression (6.36) 
ceases to be valid when q becomes so large that I yI is no longer a small quantity.) 

By examining the rate of change of the energy spectrum deviation per unit 
energy spectrum deviation, it is also possible to show that the motion of small eddy 
size approaches the equilibrium state more rapidly than that of large eddy size. 

Now let us examine the energy transfer process itself, through the energy 
transfer term T(k,  t )  which is illustrated in figure 4. In  the large wave-number 
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region, which contains only a small amount of energy, T ( k ,  t )  is shown to be nega- 
tive. This agrees with the general belief that energy transfers from the large to 
the small eddies. In  a limited region of small k, we see that T ( k ,  t )  again becomes 
negative; which means that some amount of energy flows into this region of 
small k. It is seen that this phenomenon is tightly related with the negativeness 
of &(k, t )  in this region of small k .  

I 
I 

FIGURE 5. Ratio of energy spectrum deviation to energy spectrum density 
initial case). Unit of vertical axis is proportional to B ; ( B ~ / ~ ) * .  

(Gaussian 

(ii) Non-Gaussian initial velocity $field. The analysis of the case of non-Gaussian 
initial velocity field runs parallel to that of the Gaussian case. Therefore, all 
duplicating explanations will be omitted in the following discussion. 

In  this problem, we use the solutions given by (6.13)-(6.17), where the contri- 
bution of D2)(. . .) is assumed of the same order as that of GI)(. . .). The energy 
spectrum density is given by ~ ( k ,  t )  = . . , . (6.37) 

The equilibrium energy spectrum density E’(k, t )  and the energy spectrum devia- 

Ro 4 (6.38) 
tion d(k,  t )  are given by 

E ’ ( ( T )  q, t )  M ... 

and (6.39) 

where higher-order terms in (R,/t) are neglected. 
As in the Gaussian case, we can show that the Loitsianskii parameter is not 

constant in time but does approach a constant. 
The energy transfer term T ( k ,  t )  is given by 

This expression shows that 

(6.40) 

(6.41) 

which again confirms the energy conservation by the non-linear term. 
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In  figure 6, the energy spectrum deviation 8 ( k ,  t )  is plotted. This shows that 

Let us consider the following ratio: 
&(k, t )  is positive everywhere, in contrast to the Gaussian case. 

where 

(Eye, 0))Z-t’ J d k ’ ( D ) ( k ’ ,  - k’; 0))Z 
7T 

(6 .42)  

(t/Ro)+k 

FIGURE 6. Energy spectrum deviation (non-Gaussian initial case). 
Unit of vertical axis is proportional to R,(R,/~)+. 

The curve of y (k ,  t )  against p is given by figure 8. As in the Gaussian case, the 
magnitude of y(k , t )  is increasing for large wave-numbers, which means again 
that the motion of small eddy size is less settled than that of large. 

In  figure 7, the curves of - ( a / a t ) d ( k ,  t ) ,  ( 2 / R , ) k 2 b ( k ,  t )  and T(k,  t )  are plotted 
against q. In  all of wave-number space, - ( a / a t ) b ( k ,  t )  is positive, so that the 
magnitude of the energy spectrum deviation decays everywhere. 

The curve of the energy transfer term shows that energy flows consistently 
from the large to the small eddies. Unlike the region of the purely Gaussian initial 
case, energy never flows into the region of very small k. We see that it is the 
positiveness of b ( k ,  1 )  near k = 0 that avoids this feature. 

(iii) Comparison of Gaussian and non-Gaussian cases. In  almost all ofthe energy- 
containing region of wave-number space, the energy spectrum deviation &(k, t )  
for the Gaussian initial case and for the non-Gaussian case have opposite signs. 
Of course, in both cases, the process occurs in such a way as to reduce the absolute 
value of 8 ( k ,  t ) .  Both cases also show that the motion of small eddy size is less 
settled than that of large eddy size, but the former approaches equilibrium more 
rapidly than the latter. 
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It is the negativeness of &(k, t )  in the region of small k that induces the negative 
energy flow in that region. By changing the magnitude of the initial value of 
L@)(. . . ; 0), however, the region of presumably anomalous negative energy flow 
at small wave-numbers can be reduced. This emphasizes the importance of the 
choice of the ‘initial’ velocity field (‘initial’ meaning relative to the late decay 
period). It should be noted that the possibility of negative energy flow in the 
region of small k is a characteristic of Burgers model, but not necessarily of real 
turbulence. 

I 
I 
I 
I 
I 

I I 1 

0 1 2 
c 

(tlRo)i k (tlR0)i k 
FIGURE 7 FIGURE 8 

FIGURE 7. (1) Viscous dissipation. (2) Energy transfer term. (3) Minus the rate of change 
of the onergy spectrum deviation (non-Gaussian initial case). Unit of vertical axis is 
proportional to ( R ~ / $ .  
FIGURE 8. Ratio of energy spectrum to energy spectrum density (non-Gaussian initial case). 
Unit of vortical axis is proportional to  Ro(Ro/t)*. 

6.6. The velocity distribution 

A test of Gaussianity of the velocity field can be made by examining the skewness 

and 

(6.43) 

(6.44) 

where u ( ~ ) ( x ,  t )  means (dn/dzn)u(x, t )  and NP)(t)  is the fourth-order cumulant 
of the field of u(n)(x, t), which is given by 

N p ( t )  = ((&(2, t))4) - 3[((u(n)(2, t ) ) 2 ) ] 2 .  (6.45) 

The expressions of the second- and third-order moments and the fourth-order 
cumulant in terms of the Cameron-Martin-Wiener kernels are essentially 
the same as $2, but all of the functions and variables should be replaced by 
(scalars ’, because the velocity field at present is one-dimensional. 
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(i) Gaussian initial velocity jield. Substituting the solutions, (6.9)-( 6.12), 
and neglecting higher-order terms of (R,/t), we get the following : 
The second-order moment is given by 

((u'")(x, t ) ) Z )  ?x ... . (6.46) 

The third-order moment is given by 

((u'yx, 4)3) M . . ., (6.47) 

where n has to  be an odd number if there is to be a non-vanishing third-order 
moment, because, if n is even, this moment vanishes identically by reflexion 
symmetry. 

t 

?& 

FIGURE 9 

n 

FIGURE 10 

FIGURE 9. Skewness factor of velocity derivatives (Gaussian initial case). Unit of vertical 
axis is proportional to R,(R,,/t)). 
FIGURE 10. Flatness factor minus three of velocity derivatives (Gaussian initial case). 
Unit of vertical axis is proportional to R:(R,/@. 

The fourth-order cumulant is given by 

Ni"'(t) x ... . (6.48) 

From these expressions, the skewness factor is given by 

eq. (6.47) 
(eq. (6.46))a ' (8 .f )n = (6.49) 

by which we easily see that it decays as (R,/t)i. The dependence on n is plotted 
in figure 9. The flatness factor is now given by 

eq. (6.48) 
(f = 3+(eq. (6.46))2' 

(6.50) 

This shows that the flatness factor minus three decays as (R,,/t)J. The dependence 
on n is pIotted in figure 10 which shows a rapid increase with n. 

(ii) Non-Gaussian initial velocity Jield. In this case, we use the solutions ob- 
tained a t  (6.13)-(6.17). Then the second-order moment is given by 

((U'"'(., t))2) M ... . (6.51) 
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The third-order moment is given by 

((u'")(x, t ) ) 3 )  M . . . ' 
= 0 i f n  is even. 

The fourth-order cumulant is given by 

N y t )  M ... . 

61 7 

(6.52) 

(6.35) 

n 

FIGURE 11 

n 

FIGURE 12 

FIGURE 11. Skewness factor of velocity derivatives (non-Gaussian initial case). Unit of 
vertical axis is proportional to (~~/i$. 

FIGURE 12. Flatness factor of velocity derivatives (non-Gaussian initial case). Unit of 
vertical axis is proportional to (R&. 

Therefore, the skewness and flatness factors are obtained from 

and 

eq. (6.52) 

(8 .f )n = (eq. (6.51))g 

eq. (6.53) 
(fmf), = 3+(eq.(6.51))2' 

(6.54) 

(6.55) 

by which we see that, as in the Gaussian initial case, the skewness factor decays 
as (R,/t)a and the flatness factor minus three decays as (R,,/i$. The n dependence 
of both of them are plotted in figures 11 and 12. 

(iii) Comparison of Gaussian and non-Gaussian cases. A remarkable difference 
between Gaussian and non-Gaussian cases is seen for the dependence on n of 
the (flatness factor - 3) for the field of velocity derivatives; in contrast to the 
Gaussian initial case (i), the flatness factor for the non-Gaussian initial case (ii) 
does not increase with n, at least not for the fist few values of n. This is further 
evidence of the strong influence of initial conditions on the behaviour in late 
decay stage, as previously emphasized at  the end of the preceding section and 
also by Siegel, Imamura & Meecham (1965). Because of this, the amount of 
information on the 'universal' characteristics of turbulence which can be ob- 
tained from the analysis of the quasi-linear stage, at  least directly, seems highly 
restricted. 
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